Periodic Delone Tilings

نویسندگان

  • Nikolai P. Dolbilin
  • Daniel H. Huson
  • Matthew S. Delaney
چکیده

Given a periodic point set in 3-dimensional Euclidean space, an algorithm is described for computing the corresponding periodic Delone tiling (and its Delaney symbol). Examples of applications in tiling theory and crystallography are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equicontinuous Delone Dynamical Systems

We characterize equicontinuous Delone dynamical systems as those coming from Delone sets with strongly almost periodic Dirac combs. Within the class of systems with finite local complexity the only equicontinuous systems are then shown to be the crystalline ones. On the other hand, within the class without finite local complexity, we exhibit examples of equicontinuous minimal Delone dynamical s...

متن کامل

PSEUDO-SELF-AFFINE TILINGS IN Rd

It is proved that every pseudo-self-affine tiling in R is mutually locally derivable with a self-affine tiling. A characterization of pseudo-self-similar tilings in terms of derived Voronöı tessellations is a corollary. Previously, these results were obtained in the planar case, jointly with Priebe Frank. The new approach is based on the theory of graph-directed iterated function systems and su...

متن کامل

Tilings Associated with Beta-numeration and Substitutions

This paper surveys different constructions and properties of some multiple tilings (that is, finite-to-one coverings) of the space that can be associated with beta-numeration and substitutions. It is indeed possible, generalizing Rauzy’s and Thurston’s constructions, to associate in a natural way either with a Pisot number β (of degree d) or with a Pisot substitution σ (on d letters) some compa...

متن کامل

Collisions and their Catenations: Ultimately Periodic Tilings of the Plane

Motivated by the study of cellular automata algorithmic and dynamics, we investigate an extension of ultimately periodic words to twodimensional infinite words: collisions. A natural composition operation on tilings leads to a catenation operation on collisions. By existence of aperiodic tile sets, ultimately periodic tilings of the plane cannot generate all possible tilings but exhibit some us...

متن کامل

Local Rules for Computable Planar Tilings

Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals (discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the aperiodic ones. In this paper, we answer this question for the well-studied class of non-period...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996